Distribution of amine oxidases and amine dehydrogenases in bacteria grown on primary amines and characterization of the amine oxidase from Klebsiella oxytoca.

نویسندگان

  • A Hacisalihoglu
  • J A Jongejan
  • J A Duine
چکیده

The bacteria Klebsiella oxytoca LMD 72.65 (ATCC 8724), Arthrobacter P1 LMD 81.60 (NCIB 11625), Paracoccus versutus LMD 80.62 (ATCC 25364), Escherichia coli W LMD 50.28 (ATCC 9637), E. coli K12 LMD 93.68, Pseudomonas aeruginosa PAO1 LMD 89.1 (ATCC 17933) and Pseudomonas putida LMD 68.20 (ATCC 12633) utilized primary amines as a carbon and energy source, although the range of amines accepted varied from organism to organism. The Gram-negative bacteria K. oxytoca and E. coli as well as the Gram-positive methylotroph Arthrobacter P1 used an oxidase whereas the pseudomonads and the Gram-negative methylotroph Paracoccus versutus used a dehydrogenase for amine oxidation. K. oxytoca utilized several primary amines but showed a preference for those containing a phenyl group moiety. Only a single oxidase was used for oxidation of the amines. After purification, the following characteristics of the enzyme indicated that it belonged to the group of copper-quinoprotein amine oxidase (EC 1.4.3.6): the molecular mass (172,000 Da) of the homodimeric protein; the UV/visible and EPR spectra of isolated and p-nitrophenylhydrazine-inhibited enzyme; the presence and the content of copper and topaquinone (TPQ). The amine oxidase appeared to be soluble and localized in the periplasm, but catalase and NAD-dependent aromatic aldehyde dehydrogenase, enzymes catalysing the conversion of its reaction products, were found in the cytoplasm. From the amino acid sequence of the N-terminal part as well as that of a purified peptide, it appears that K. oxytoca produces a copper-quinoprotein oxidase which is very similar to that found in other Enterobacteriaceae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of amine oxidases and amine dehydrogenases in bacteria grown on primary arnines and characterization of the arnine oxidase f rom Klebsiella oxytoca

Department of Microbiology and Enzymology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands The bacteria Klebsiella oxytoca LMD 72.65 (ATCC 8724), Arthrobacter PI LMD 81.60 (NCIB 11 625), Paracoccus wersutus LMD 80.62 (ATCC 25364), Escherichia coli W LMD 50.28 (ATCC 9637), E. coli K12 LMD 93.68, Pseudomonas aeruginosa PA01 LMD 89.1 (ATCC 17933) and Pseudomonas puti...

متن کامل

Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II) ion and 2,4,5-trihydroxyphenylalanine (TPQ) as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to mol...

متن کامل

Competitive inhibition of copper amine oxidases by vitamin B hydrochloride in chickpea

Copper amine oxidases (CAOs) catalyse the oxidative de-amination of biogenic amines which are ubiquitous compounds essential for cell growth and proliferation. The enzymes are homodimers containing both topaquinone and a Cu(II) ions as cofactors at the active site of each subunit. After extraction and purification of chickpea (cicer arietinum) amine oxidase by chromatoghraphy, Km and Vmax of th...

متن کامل

Synthesis and characterization of derived imines from 4-imino-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-3(4H)-amine

The synthesis and characterization of derived imines from 4-imino-5,6,7,8-tetrahydro-1-benzo thieno[2,3-d]pyrimidin-3(4H)-amine 3 has been developed in 3 steps through the reaction of heteroaromatic o-aminonitrile 1 with triethyl orthoformate afforded the corresponding imido ester 2 followed by cyclization with hydrazine hydrate to furnish iminothienopyrimidineamine 3 and finally the imination ...

متن کامل

Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini.

Oxidation of the biologically important polyamines spermine and spermidine by plasma amine oxidase (PAO) was specified many years ago to occur at the terminal primary rather than internal secondary amine positions. However, the finding of sequential enzymatic conversion of spermine to spermidine and then to putrescine (1, 4-butanediamine) is superficially suggestive of metabolism at the seconda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 143 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1997